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1I1. Diffraction.

By E. T. Hanson, B.A.
(Communicated by F. E. Swrra, Src.R.S.)

(Received November 14, 1929—Read January 23, 1930.)
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- InTRODUCTION.

When HuveeN’s principle is applied to.the problem of the straight edge, FRESNEL’S
diffraction phenomena in the neighbourhood of the geometrical shadow can be accounted
for, and the theory agrees closely with observation.

But so many approximations are involved in the application of FRESNEL’S theory,
that an outstanding event in the history of diffraction theory was the discovery of the
exact solution for waves impinging upon a semi-infinite plane. -

This problem constitutes the only one in diffraction theory which has been solved
completely in a comparatively simple form. It is a special case of the wedge problem,
the successful treatment,of which is due to the fact that there are no dimensions con-
cerned which bear a relation to the wave-length of the incident disturbance. The
solution of the problem is due to the labours of a number of mathematicians, among
whom PoiNcarf (°Acta Math.,” vol. 16, p. 297 (1892-3)), SoMMERFELD (*‘ Math.
Theorie der Diffraction,” ‘ Math. Ann., vol. 47, pp. 317-374 (1895) ), MACDONALD
(““ Electric Waves,” and ¢ Proc. London Math. Soc.,” ser. 2, vol. 14, part 6), and Brom-
WICH (thid.), may be mentioned.

Now, when the edge of the plane is not infinitely thin, or, more precisely, when it is
so fashioned that dimensions are involved which are comparable with the wave-length
of the incident disturbance, there must be some additional effects upon the diffraction
phenomena in the neighbourhood of the geometrical shadow. The discussion of these

effects is one of the subjects of the present paper, for FRESNEL’S theory cannot be
VOL. COXXIX.—A 672 N [Published, April 17, 1930.
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88 E. T. HANSON ON DIFFRACTION.

considered as complete without some further investigation. It is shown that the problem
of the diffraction of waves by two parallel semi-infinite planes can be solved, one of the
most interesting applications of the solution being made to a consideration of the effect
of the thickness of a straight edge upon FresNeL’s diffraction phenomena. Further,
the problem of a train of waves impinging upon a thin two-dimensional lamina is one
of such difficulty that it has not been treated with complete success. But if the lamina
be joined to a thin semi-infinite plane partition, the two being at right angles to one
another and the centre line of the former being coincident with the edge of the latter,
the problem becomes tractable. From the acoustical point of view this latter problem
is of considerable importance. The introduction of the partition prevents complete
circulation around the lamina, and thus simplifies the analytical treatment. The effect
of the lamina upon FrEsNEL’S diffraction phenomena is discussed. Again, let us
consider a tube, into which waves are entering. In the ideal case of a tube with infinitely
thin perfectly reflecting walls, consisting of two parallel semi-infinite planes and thus
constituting the two-dimensional example, the problem can be solved completely.
Apart from the applications mentioned, the analytical method is given in some detail,
for it is capable of giving, by the repeated application of a simple though probably
laborious process, the complete solution of the problems considered.

Although the analysis in these problems is somewhat long and intricate it furnishes
some interesting results in the theory of infinite series, and it is hoped that the practical
solutions, of which unfortunately there are only too few in this important branch of
mathematical physics, may be of some value:

SECTION 1.—PRELIMINARY THEORY.

The diffracting surfaces considered are, in every case, two-dimensional. In other
words their generating lines are parallel to some fixed direction in space, which is
assumed to be the direction of the axis of z.

When the waves incident upon a surface are plane waves of sound, suitable solutions
will be obtained, and in this case a function u, must be found whose normal gradient
vanishes at every point of the surface.

The undisturbed incident wave requires precise definition if it is electromagnetic.
BromwicH has shown, in his paper referred to in the Introduction, that the problem
of diffraction can be solved in the case of a perfectly reflecting wedge, if the electro-
magnetic waves proceed from a Hertzian oscillator whose axis is parallel to the edge of
the wedge.

It is not difficult to show that the problem can be solved in the case of any two-
dimensional surface with arbitrary optical properties, if the axis of the oscillator is
parallel to the generating lines of the surface.

Accordingly the incident electromagnetic waves which we shall have under con-
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E. T. HANSON ON DIFFRACTION. -89

sideration are assumed to proceed from a Hertzian oscillator whose axis is parallel to
the axis of z, the oscillator being at such a great distance from that portion of space to
which the analysis is applied that in the said space the undisturbed incident wave may
be assumed to be plane. Unless otherwise stated the diffracting surface is assumed to
be perfectly reflecting, and then the solution required is expressed by a vector u, W]nch
must vanish at every point of the surface.

If u, be expressed in cylindrical co-ordinates 7, 0, z, the polarisation at any point in
space is obtained from MAXWELL’S equations. Let X, Y, Z be the components of
electric force respectively along the radius vector r, perpendicular to r and z; and along
z; let a, b, ¢ be the corresponding components of magnetic force ; let ¢ be the velocity
of the wave and ¢ the time. Then

.];é_}g_—_:% a ___a_’?;lg_ )

@ ot  oroz’ T rob

10Y _ 0%, ‘ ____ 0OUy

2ot 71060z b= or SR (1)
10Z _ 0%y |, 0%y .

ot c2at2+az2’ c=0 J

The theory to which we proceed is preferably commenced by employmg rectangular
co-ordinates. Let u be a wave function, so that

% | 0% 02u 1 82&
et + _|_ TR RNE (2)
Write . :
U = gixltmtnzte) o
where

b me n? =
then, if F, be a function of  and y only,

o?F,
or?

oF,
oY

+8F°+2 laF"—I—mm

We shall now transform to other variables ¢ and ¢ connected with  and y by the complex
equation

x+wy = f(é +d),

or

We have
O, _aF, 04 o o4

ox o “ox | oy ‘oz’
N 2
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90 E. T. HANSON ON DIFFRACTION.

and a similar equation for 0F,/dy. Writing, in accordance with the well-known theory
of the complex variable,

ggif.qu;g_i = i,
we have
Lw_ iy
oy, 8¢ 8¢
= ;Z-(u' + '),
where
@ =u'? 40,
Hence
&é = — u, == a._w_ et Q?
ox oy’
?.."_p = Q)’ -—ZZ— ¢ ,
ox </> ay
and '
o2F, aZFo <8 F,  0%F, >
ox? ™ 0y? o ¢? s+ oy?

Let ¢, be the angle which the normal to the undisturbed incident wave front makes
with the axis of 2, then we shall put

I = sin ¢, cos {,,

m = sin ¢, sin Y,

n = COS ¢,.
Equation (3) accordingly transforms into

/0F, ox , oF, oz

0Fy | 3Fy | o
8¢2+8¢2+22 s1n¢0{cos¢0\a¢ a¢+a¢ a\l-'/
in g 22 | 0, 0o
—|—sm¢0(\ o9 8¢+8¢ 8¢>} 0. .. (4

There is another form of the differential equation which will be found useful.

Let
— RY pix t
U = F e@ (nz+c¢ ),

where F’ is a function of z and y only. Then

o*F’ | 0K’

e T b= =0,
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E. T. HANSON ON DIFFRACTION. 91

which, in the transformed co-ordinates, is equivalent to the equation

OF | PF (L —m)
o$®  o¢? 9

FI — piky (d+my) X F,

F=o0.

Let now

so that
’ U = ex('yl¢+ymnp+nz+ct) F

then F must satisfy the equation

o*F
o2

oF
8«]52 ¢ )

It is, of course, only for certain transformations that the differential equations (4) and
(5) are tractable, and to the consideration of some of these we now proceed.

F LT o Yla -|—2u<ym

+ 2<1—%2—.— 2l2__ 2m2>F=0, . . (5)

q2

SECTION 2.—THE TRANSFORMATION APPROPRIATE TO TwoO PARALLEL SEMI-INFINITE
‘ PrANES.

Waves are incident in the direction ¢, ¢, upon the two parallel semi-infinite planes
AA’ and BB’ (fig. 1). Tt should be noticed that ¢, is not an angle but a parameter,
but the curves, ¢ = const., are sensibly straight lines when ¢ is large, the parameters
¢ and ¢ being defined as follows. The transformation required for this problem was

Yo+ T

Y Y=2m

Fia. 1.
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92 E. T. HANSON ON DIFFRACTION.

first given by HeLMHOLTZ, but it is obtainable at once by the application of a general
method due to Scawarz. The transformation is

~

¢ =2(—1+¢) +o,
where : .
2 =z 4w, S (6)
X = 96 +74‘-P,
and
© = a - ip. J -

In fig. 1 AA’ corresponds to ¢ = 0 and BB’ corresponds to ¢ = 2r. The broken curve
AOB corresponds to ¢ = 0. _
If it be assumed that x = 0 and y = 0 when ¢ = 0 and ¢ = =, then it follows that
ng(l — ¢ + ¢e* cos ¢) l
and
o :
y=2—y+esny |
2a being the distance between the two planes. As in the first section we write

U = eix(la:+my+nz+ct) . Fo,

where
I = sin ¢, cos Y,
m = sin ¢, sin ¢,
and
. N = CcO8 ;.
Now

ix (ke + my + nz + ¢t) = A cos P, (1 — 4) + $A sin ¢, (v — ¢)
+ 3Ae? cos (¢ — o) + ik (cOS ¢y . 2 + ct).

where
A= 27;K;i‘:sin .
Hence
uy= " K,
where
M= %A' sin "PO (T: - ‘*[))a
and

N = }A cos §o (1 — ¢) -+ LAe? cos (U — o) + 9« (cOs ¢y . 2 + cf).

The reason for this procedure will be apparent subsequently.
Let now
Fy =e™"F,
so that
u=c¢e".F.
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E. T. HANSON ON DIFFRACTION. 93

In order to find the differential équa.tion satisfied by F we have, in the first place,

%110 o @_15 + 3 sin 4y . F), ]

i . (8)
82F0 -M 8 F 2 2
gt = (Gt Asin B+ 1 s T,

In the second place, on applying the differential equation (4) to the transformation (7),
it is found that F, satisfies the equation

3F, | o°F,  , oF,

8¢‘-’+84a2 Aa¢ cos Yo — Aa£81n¢0+Aa¢e¢GOS(¢*¢)
Aai"e“’sm(up—‘b)

On substituting from (8) it follows that ¥ must satisfy the equation

o’F

v o*F e"’ cos (¢ — o) — —a—F-e" sin (¢ — ¢,)

W a¢ ) Ao
— $A%sin? o . F — A% sin e’ sin (¢ — §,) . F= 0. N )

+ 08 o +A

Now the solution of the problem of the single infinitely thin semi-infinite plane, deduced
by making xa very small, is obtained from (9) by omitting the third term and the last
two terms upon the left-hand side of that equation. It is, in fact, a first approximation
to the solution which is being sought. The expansion of F which is, accordingly,
suggested is one in ascending powers of cos (¢ — $o ).

Let us write, momentarily,

P =cos" § (4 — ¢o) = ", say;
we have then

P .
P it = 0
'“qjl? in(n—1) p" ™ — {nPp,

P cos (¢ — §o) = 2p"*2 — p",

?—; sin (4 — o) = np® + nptt,

Again, writing momentarily,

Q=sing (¢ — o) "
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94 E. T. HANSON ON DIFFRACTION.

we have

GQ

= fnu" —§(n—1) p"~

aq}z iSIn% ¢"" LI"O {(n_—l) (%-—‘2) M”~3_n2“”—l}?
Qcos (¢ — $o) = sin '%(4’ — §o) 2u"tt — u" Y,
@mm¢—%r= L4 — o) fou™ — (n— 1)1,

The suitable expansion for F is, therefore,
F = 2y,

un:P‘n'Fn—}—ta'n%("p_q)o)'P‘n-Gm

where

F, and G, are functions of ¢ only, and n may take either all even integral values from
0 to infinity or all odd integral values from 1 to infinity.
If now the left-hand side of (9) be applied to w,, there is obtained the expression

T, oF, . ’ .
{ 36t in*F, — A cos % a ¢ Ae? s +nAe’F, —;A?sin? {1, — A?sin %6"’(}”}
ot dn(n— D E,}
& “n+2{2 At %%--_ nAe’F, + A? sin %e"’Gn}
+tan § (¢ — ¢o)
a Gﬂ 2 4) b, 2 (12 \
x[ {8952 102G, — A cos do 2 ¢ — A B (1 1) ACG,— A% sin® ol |
A+ 2 {E(n—1)(n — 2) G,}
N {2Ae"’ %G;_n_ nAe*, — A2 sin %e"’Fn}] e e e e (10)

Expansions must now be assumed for F, and (,, and the most general suitable

expressions are given by
: F, = Z a,,e"™

and
G, = 2 b,,e™.

The index m is a positive or negative integer, & denotes the sign of summation, and the
@’s and b’s are coefficients to be determined subsequently.

When # is an odd integer m is also an odd integer, and when » is an even integer
which may include zero, m is also an even integer which may include zero.
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If now we insert the expansions for F, and G, in (10) and consider all the postulated
values of n and m, we have to select in the first place the coefficient of p"et™* in the
expansion of the differential equation, and in the second place the coefficient of
tan § (¢ — b,) wei™.

These coefficients, along with all those obtained by giving the prescribed values to
n and m, must be zero in order to ensure the satisfaction of the wave equation.

Hence, writing
: A, = im?* — In® — ImA cos y, — 1A% sin? ¢,

and selecting the aforesaid coefficients, we must have

anmAnm + a’n,m—-z <"" m—;? + ’I’b) A + bn, m—2 (_'lx2 Sin '*I"o)

+ Onpomz (0 4+ 2) (0 + 1) + Gpeg meae (M —n) A 4 by_s s (AZsin §o) = 0, (11)
and ‘ :

bnmAmy + bn,m—-z ('_ o ; 2 + n — 1) A
-+ bn+2,n% n(n 1) 4 pegymez (M — 1) A 4 @y_s ez (— A%sin ¢y) = 0. (12),

- When «a is small a first approximation to the solution of (9) is obtained as follows.
The omission of the third term and the two last terms on the left-hand side of (9) is
equivalent to writing
' ' . Ay = %’m’z — %’ﬁﬂ
and omitting the b’s in (11).

Under these circumstances, if we put m = n in (11), the coefficients of a,, and
Qn—3, m—2 vanish, thus indicating that the series obtained by retaining only the a’s
whose suffixes are equal is a.solution when «a is small.

The general solution will, of course, depend upon the form which we assign to F,
or F;. We must assume that m is a positive integer, otherwise F would increase
indefinitely within the space enclosed between the two planes. In the first solution,
therefore, both #» and m are assumed to be odd integers, and further it is postulated that
F, contains only the single term a;,et*. It further will be assumed provisionally that
(; contains only the single term b,,e**. We have, therefore, initially

Ag = s = Oy = ... =0,
and ;
b13=b15=bl7=...=0-‘

Putting » = 1 and m = 3 in (11) and (12) there are obtained the equations

%Aall - A.2 Si]l LI"Obll + 7}‘: . 3 . 2 (1:33 - 0,
and
"‘"‘%A.b]_]_ “I"T}:‘. ]. -2b33‘=0.
VOL. OOXXIX.—A (0]
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96 E. T. HANSON ON DIFFRACTION.
Again, putting n = 1 and m = 5 in (11) and (12) we have

%.3.2“35=0

and
i.1.2635:0.

Proceeding in this way it is readily seen that a solution can be obtained in which the
b’s, whose suffixes are equal, are not required, and in which, further, all the ’s and a’s,
containing a second suffix which is greater than the first, may be omitted.

Finally, if we put m = 1 in (12), we see that any b, whose second suffix is.unity, may
be omitted.

The solution we are seeking can now be divided up into series, and we consider, to
begin with, that part of the solution consisting of the series which contains only those
coefficients whose suffixes are equal. Putting, then, m = n + 2 in (11) it follows that

t(n +2)(n + 1)ty nye + EnAa,, =0,

or
2n
a’n+2.n+2:—(n+2) - I}A%”' O B
Write now '
a’ll = A%a
and

Ater cos 1 (¢ — ¢y) = .
Denoting by S, the series under consideration, it follows from (13) that

o’ o’

3
8 — o — & .
0= T575 3w

113

+...:~re—v’dv;. L (19)
0

which is the FRESNEL integral.
Next we consider that part of the solution which consists of the series containing
only those b’s whose suffixes differ by two. Putting m = » in (12), it follows that

n (’I’b + ]-) bn—l—2, n —I— QM’Abn, n—2 " 4=A2 Siﬂ ¢0an—2, n—2 — O~
Writing B = 2A, we have in succession

—stin¢oa11+3.4b53+0+...+0 :0,
‘—stin ¢0a33+5Bb53+5.6b75+..- +0 ::0

— B2sin ¢ty g ns + 0+ 1) bpyop+ ... + 8Bby 4e =0.
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E. T. HANSON ON. DIFFRACTION. 97

Eliminating all the b’s, except b, ,, we form the determinant

: (W4 1) byps n
0= an Qg3 s Qg -2 — —%—;—l_gg—&iz—’-
H 0
3.4 5B 0 0
0 5.6 7B 0
0 0 0 nB

Now, by an easily proved property of determinants, the value of any minor in the above
determinant with respect to the components of the first row, is simply the product of
the components of the diagonal of the said minor. '

Accordingly, upon inserting the equivalents of the a’s which have already been found,
it follows that :

(g DLy g1
: |

1 2 3 , 1 n—1
X{m+§3+5_.—7+”'+2%(n~2)}'

Now the expression in brackets is equivalent to

i{22n - (W/ + 1)/n}a
Z,=1+3+i+...+1/m

where

Hence, finally,

bﬂ+2’n — (__ 1)%(”—3) sin ¢0Aé(ﬂ+2) {__1___ 2, —

1
(3n +%)! (%’ﬂ—%—)!}'

TR -

Denoting by T, the series under consideration, and putting A¥e* cos § (¢ — bo) =@
as before, it follows that

T, = sin o tan 4 (¢ — o) p.zA[——-oc-l—! 21+a32—!23—a5§—!25+...

111 3

1 (11
Teior T 3 T a0 ]

j: (e=™ —e™) L u+ J

R |-

| —

= S.in Yo tan F (4 — ¢o) 2 A

sinee

5 — jl ] — g2 ¥t
" 0 1 —u?

.02
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98 E. T. HANSON ON DIFFRACTION.
We shall next consider the series obtained by putting m = 1 in (11). We ha.ve.
(m+2)(n+1) a5, +(1 ——’ n? — A?sin? ¢, — 2A cos $y) @, =0. . (16)
Putting #n = 1 in (16) we obtain

(g = §l§ (A?sin? §y +2A cos o) AL . . L L L L (17)

Hence the series which contains those a’s whose suffixes differ by two may be expressed

in the form
sin® ¢ pPA%f, («) + cos ¢, 2A$1'292 (@),

where f, and ¢, are functions of «.
Putting » = 3 in (16) we obtain

(g = 51! (A% sin? ¢, 4 2A cos §,) (A2sin? ¢, + 2A cos ¢, + 8) AL . . (18)

Similarly, on putting » = 5 and m = 3 in (12) we obtain

by = 5—-—16 [(16 + A2 sin? ¢, + 6A cos Y,) + & (A2sin? ¢y 4 2A cos %)]Jff_gi_l_l_a!@. (19)

We may conclude, by an inspection of these expressions and an extension to include the
series which contain coefficients with suffixes that differ by 6, 8, etc., that when
2ua sin ¢y /x is of the order unity or less and when |¢ — ¢,| does not differ much from
=, that is in the neighbourhood of the geometrical shadow, the series S, is a first approxi-
mation to the solution under consideration and 8, + T, a second.

When 2«a sin ¢, /n is greater than unity it is necessary that 2«a sin ¢, . /= should
be small if the above approximation is to hold.

Second Solution.

It is now necessary to consider a second solution of the differential equation (9),
which is required in order to make the complete solution tend to vanish within the

geometrical shadow.
We make the same assumptions as before except that in this case the indices # and m

are even integers.
Putting m = n in (12) we obtain

(A4 1)byps n + 240D, , o — 4A28ID Yolly_5 a2 =0. . . . (20)
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E. T. HANSON ON DIFFRACTION. 99

We must assume that the b’s, whose suffixes are equal, vanish ; and that the a’s, whose
suffixes are equal except agy, vanish. Putting n = 2 in (20) we obtain

by = ‘3‘1“2 (4A%sin §y . @gp — 4ADy,)
= .4
=33 AC, say.

Putting n = 2, 4, 6, etc., in succession in (20), we have then

A 2

= 4 C
42 + 2
. A 4 2
664-—‘-‘425' é.éC,
A3 6 4 2
=44L = . -. <. .
86 + 7' 2 2 203 etc

For the series under consideration we shall write R,. Then

2
R2=tan%(¢—%)yﬁ{§o¢2 g g 4+2 2. 3 °——-...}C, ... (21)

where « has the previous significance. This is the only series that will be reqﬁired in
this solution, when . is small. The expression for R, is easily found to be

"’dv}(). C e (22)

R, =tan 3 (¢ — ¢p) 211—~—e“"[

0

Collecting the foregoing results we have in the neighbourhood of the geometrical shadow,
{ — ¢y ==, where, if ¢ is large, « is not necessarily small, that is in the important
region of the FrREsNEL diffraction phenomena,

. F = B (SO "!_ Tg) “‘]— aoo —l— Rz, -------- (23)
where B is a constant. : :

Before putting F into its final form, let us consider the nature of the function T,.
- Let

T L sw .
= L (e —e™) du. . .. ... » (24)

1— u“‘
This expression is unsuitable, in its present form, for calculation. It must
accordingly be transformed as follows.

From (24) we have

1
I
=§re“"’ dv
0
= ;‘1- e‘“2<oc'+§ocs—§—§:§cx5 -+ >
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100 E. T. HANSON ON DIFFRACTION.

Hence, upon integration,
e/ 1 2 1 2.2
T=a2e (1 4+=.%a +=.
e\l Tg-39+T3-35

=oafe " (M44N), say. . . e v v o v eeeoa. (25

oc4—}—...>

These functions M and N can be calculated with ease to include the first maximum of
FresNeL’s diffraction phenomena. For this purpose it is convenient to write

o =\ "%ﬂ BS’
so that
| p:%wmmeW%w—%f

If, further, we write 8% =y, we have

11 1 1
M=1—=. 2 e ——
335 T5 53579
and
11 1 1 s
N=3-37— 135"t

These series are rapidly convergent and have been used to calculate the following table,
which has been found useful :—

Y M. N
0 1 0

1 0-978 0-164
2 0-914 0-315
3 0-816 0-440
4 0-694 0-530
5 0-561 0-581
6 0-430 0-595
7 0-312 0-575
8 0-215 0-529
9 0-145 0-467

In order to determine the asymptotic value of T, we have already found that

, dT 1 [ _,.
T + i joe dv.
Hence, when « is large,
T+ 95 o,

or ,
T »e~,
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We can now write down the required expression for F, on developing (23). It is obtained
as follows. . ,
Let by, = 0, which must be so, since it is an independent coefficient. Then

C = A sin ¢, . Ao

Let, further,
o [ oy = g
B —e
Then
F o {14 Ay (7 e
b= {1bsingo tan 3 (4 — bo) wA) [ e dv
+ sin ¢, tan 3 (¢ — ¢,) 51,2A{--~;1( T — %Z%*e"“’ re”’ dv}. e (27)
JO

It should be noted that, since

o = <27}r< g sin ¢o>%e“’ cos % (¥ — dy),

the integrals in (27) can be put readily into FRESNEL’S form.

The solution for the reflected wave, which is obtained by changing the sign of ¢,
in the solution already discussed, must be small in the neighbourhood of FrRESNEL’s
diffraction phenomena, and it will have no appreciable effect upon the rapid alterations
of intensity in that neighbourhood. ‘

Let us assume that the edges A and B (fig. 1) of the two semi-infinite planes are joined
by a plane face, so that we have in effect a thick semi-infinite plane. It is then apparent
that the waves, which would otherwise have entered the space between the planes,
will now be scattered by the face AB. The effect of these scattered waves may con-
fidently be assumed to be negligible in the region under consideration.

When we consider the problem of the diffraction of light by a straight edge, we picture
the latter as the edge of a thin sheet of metal, ignoring the fact that the thickness of
the sheet is probably great when expressed in terms of wave-length of the incident light.
Observation and also theory, as we have just seen, indicate that the thickness does not
essentially affect the phenomena of diffraction in the neighbourhood of the shadow at
points sufficiently distant from the straight edge, that is at points where those phenomena
are usually observed. ‘

But there is one other important point to notice.

The geometrical shadow has so far been defined as the locus ¢ — ¢y = =.

Let us consider perpendicular incidence, in which case ¢ = 4n. Then ¢, = §=,
defines the geometrical shadow. In this case let P (fig. 1) be a point upon the geo-
metrical shadow. Then the co-ordinates of P are, if we refer « and y to C as origin,

v=—2(01+9) y=—20G+e).

U1
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102 , E. T. HANSON ON DIFFRACTION.

Join P to C, the centre of the edge, and let PC make an angle 6, with the direction of
incidence. Then

tam 0, = (1 + ¢)/(4= + &)
It is clear that, for large values of ¢, 6,—~ zero, but the shadow is displaced by an amount
T, = —a (1 —i— (]S)/TC,

from what may be called the true geometrical shadow.

The insertion of the face AB is not essential to the problem, and in its absence the
latter is completely solved, but the necessity of discussing the effect of thickness is
clear in a study of what is probably the most celebrated problem in diffraction.

When ¢, = 0 the solutions are much simplified. This case is applied in the
summary to a problem in sound waves.

The Motion within the Planes.

The problem of the two planes has points of interest and importance in addition
to those associated with FRESNEL’s theory. We shall apply the theory, so far developed,
to points in the space between the planes. We may first point out that, if the amplitude
of the undisturbed incident wave is unity, we must (see equation (27) ) put B = 1/x*.

Return now to the equation (16), which determines the coefficients of the series with
'’ raised to the first power only. When ¢ is large and negative, that is well inside the
two planes, this series need only be considered. The series is easily determined, but it
takes a specially interesting form for perpendicular incidence, in which case ¢, = L.

In this case, if we assume that

1 —n2— A2=0,
the series terminates.

Let us take » = 3, so that
kG SID g = TA/2.
Then 1t follows that

1
— _A2 2”
F=ot = A

Incorporating the effect of the reflected wave and considering the electromagnetic
waves postulated, the complete expression inside the planes is

1
nty/2

If the incident waves for any angle of incidence are waves of sound, and if xa be small,
the amplitude at the mouth of the planes differs very little from unity, thus verifying
the fundamental postulate in the theory of resonators that there is a loop at the mouth.

(Atem#) {2 sin 3¢ + ‘%E (3sin 3¢ + 4 sin é}zl.v)} g oo duted),

uo =
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E. T. HANSON ON DIFFRACTION. 103

The Flow of Energy. Third Solution.

The problem of diffraction when xa is small is of interest, since it can be completely
solved. The solution enables us to investigate the propagation of energy around the
edge of a thick plane into the space within the geometrical shadow.

For this problem we shall assume that the thick semi-infinite plane (thick but thin
compared with the wave-length) is bounded by the outer sides of the planes ¢ =0
and ¢ = 2= and the curved surface ¢ = 0. Still another solution of equation (9) is
required when «a is small, and in this case we write

F == al’ -1 6"“’.

Inspection shows that it is still possible to obtain a solution in ascending odd powers of
et ‘ ,

In equation (11), connecting the coefficients, we write m = n, and for that series in
which the suffixes of the a’s differ by two we must have

‘ 2Aan,n—2 + (n + 1) Apro,n = 0.
This equation leads to ‘
a3 = — Aay, _,

and, putting a, _, = A}, the succeeding terms are obtained at once.
Let « have the same significance as hitherto, and, writing S_,, for this series, we

have
Sp=Ate¥cos i (¢ —do)e™. . .. ... .. (28)

The subsequent series can be obtained by the processes already used, but S_j, is
the only series which need be retained when «a is small.

If the complete solution be now divided up into four parts u;,, v; containing cos (y—{,)
and its powers, and u,, v, containing cos % (¢ +¢,) and its powers, we can write down the
solution we are seeking. Let it be for incident sound waves, in which case it is

o = U + ¥ + U, + Ve

where
U; == —%P -l——I;—;j e dU,
T

0
_P Abe~io 1 il
vi=— Afe™ cos g (b — do) . €77,

and in which

P =exp {$Ae* cos (¢ — ¢,) + 3A (1 — ¢) cos §, - ixz cos ¢, + rctl,
o= Adet cos (4 — o),

as hitherto.
VOL. COXXIX.—A P
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104 - E. T. HANSON ON DIFFRACTION.

The expressions for u, and v, are precisely similar but with the sign of ¢, changed.
Now in the neighbourhood of the edge, ¢ = 0, this expression for u, reduces approxi-

mately to
) i :
U . euc (7 €08 y+-c )’

where

u:l—k%A‘icosh ¢ cos 3 (¢~¢0)+ A‘*coshlcﬁcosz(ap—}—yo) . (29)

If we differentiate this expression with respect to ¢, the derivative vanishes when
¢ =0.

Now the rate of variation of « along the normal to the curve ¢ = const. at any point
is denoted by au/an, or by

o¢ om
But '
¢ o 24)—1
Erd (l 2¢? cos ¢ - e*)
Considering, therefore, the second term of (29),
ouw /AN kd sinh ¢
o (7;) oos 5 (¥ — do) g5 (1 —2¢Pcos ¢ + e*) ¥

When ¢ is small this reduces to

w (AN iy oy sinh$é
——_—<W>COS2(¢ )Qa 2sin 1’

jeBlRab)

and, in the neighbourhood of the point A (fig. 1),
where ¢ is also small, it reduces to
ou (A‘\* 7r

1. 1
= =) —cosg¥y -5 .
on \TE) 2a % 2

u_ ¢

Y
This is, at first sight, indeterminate in the limit
when both ¢ and ¢ are zero. But, if we write
G = ou/on, it is clear that oG/0y = 0 at all points
of the curve ¢ = 0. Hence, if G be also zero at all
points of the same curve, it must be zero when both
¢ =0and ¢ =0.

The same reasoning applies to the last term of (29).

In fig. 2 the nature of the motion near the edge is indicated. The lines radiating from
the edge are the curves of constant phase in the case.of sound waves. The lings which
resemble the family ¢ = const. are the curves of constant phase in the case of the
prescribed electromagnetic waves,.

T1a. 2.
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E. T. HANSON ON DIFFRACTION. 105

We shall now examine the nature of the flow of energy into the space within the geo-
metrical shadow in the case of the electromagnetic waves. To this end, neglecting the
reflected wave and the wave scattered from the end ¢ = 0 which are negligible far
inside the shadow, we require only

J— P N —v?
Ui =~ j »we dv.
Now when cos § (¢ — ¢,) is negative the asymptotic value of u;  Pe~/a.

Since xa is small, denoting the perpendicular distance of a point well within the
shadow from the axis of 2 by r, where r is great compared with ¢ ; then,if ¢, = — ¢,,

| ui(asymp.)w;e‘“‘”“"’l“*“""“b‘)”"c‘.. N £ )

Let Q be this point, distant R from O and let QN (= 7) be the perpendicular upon the
axis of z.

On applying equations (1) to (30) in order to determine the forces, it is found that the
most important terms arise from the differentiation of the argument

z cos ¢, + rsin ¢, = R.

Since this argument is independent of ¢ the electrid force lies in the plane OQN and the
magnetic force at Q is perpendicular to this plane.
Now the most important part of

102 e PR e, sin? ¢,
Gy B Ul (asymp.) and that of PPl (asymp.) =

also the most important part of

1oX wey; (asymp.) and that of R

sin ¢, cos ¢,
¢ ot or . 0z '

R

o - ey, (asymp.)

It is clear, then, that the resultant electric force lies in the plane OQN and is perpendicular
to 0Q. Tt follows that, if the surface of a cone, with apex at O and axis of Z as axis,
be imagined, then at points on this surface well within the shadow energy is transmitted
into the shadow along the generating lines of the cone. The origin O is, of course,
arbitrary.

Symmetrical Problems.

The solutions are simplified and physically important, when there is symmetry about
the plane of zz. :

When the wave enters directly into the space between the two planes we may put
Yo = =. In this case equation (11) among the coefficients, omitting the third and sixth
terms on the left-hand side, is alone required.

P2
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106 E. T. HANSON ON DIFFRACTION.

Employing a process similar to that used in the determination of the coefficients of
the series T,, it is found that

- 1 1 1
Fm=1) (1, Dlg e S = e S ce
Denoting the corresponding series by S,, we have

S, = —cos? 1 (¥ Tn)%J: (e~ — ™) ng”{[z du. . . . . . (32)
This expression can be treated in precisely the same manner as we have treated the
expression for Tj. |
As typical of the processes required for a complete solution we shall consider, finally,
that series in which the suffixes of the o’s differ by four.
From (11) we have

- 2Aa’n-—4, n—6 —[" Op—g2, n—4 An—2, n—4 + Ay, n—-ﬁ%‘(% "'l_ 2) A + %”’ (% - 1) Ay, p—a = 0. (33)
In (33) write n = 5, 7, ete., in succession, and put
Biy=— 2Aan-—4, n—t An—2, n—1 P2, n—as

so that the B’s are known from the series for S,. It follows then, remembering that no
term with a negative suffix exists, that

O = Bl B3 B5 B7 « e s e {Bn_4 "’_ ’4__]”}/& ('n - 1) CL", n_4}
1.5.4 A 0o 0 . ... 0
0 1.7.63A o .. .. 0 . (34)
0 0 0 0 .... Ln+2)A

This determinant is obtained by precisely the same procedure as before.
Let now the minors, representing the coefficients, of B,, Bj, etc., be denoted by

) AFO=E 1 e  AYD ete., respectively,

so that the «’s are purely numerical coefficients. Then

B]_KIA.% (=5 ]?)3’('31&lj (=7 + cee (""‘ 1); (n—=5) {Bn_4 Kp4 + %% (7l—‘].) an’ ”n _4’('”_4} = O. (35)
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Now we obtain easily from the series for S,, if we write

R

n 1 ”""I_] 3 (n+2). Tn 1 Rarm
an (__.1)%( +3) (%n+%)’ - +2A (n+2) ,+(___ 1)?5( +1)m_§A (n+4) 2”_1_2. (36)

Inserting the values of the successive B’s in (85), it follows that

v /1 2 1 4
As( 2)<'—— ~K1+§-&.BK3+|‘.»+

1 % — 3 A
T )

Tn—FTn—2 """
1
=D

(=)D I (n — D) kg G pes =00 o o e (37)

.4 271,—2"71—-4>

m/ 1 1
- ’%'A.'T 1—"‘ Z3K1 ‘+‘ 2_':325/(3 ‘+‘ oo "‘I"‘

Considering the values of the «’s more cldsely we have

Ky _ n(n 4 2) 1!

K 5.7 T (dn—3HV
ks __n(n+2) 2!

o N T

Hence, when divided by «,_,, the coefficient of A*®»=2 in (37) becomes

2n (n + 2) 1 2 ‘n—3 :
In =51 {3.5.7'+5.7.9+"'+2(n~—2)n(n-{—2)}" - (39)

The series within brackets in this expression can be summed, for

1 n—3 31 5 1 1 1
2m—2)nn+2) 8 mn 16 nt+2 16 n—2
The sum is ~ o
1 5 1 11
24 16 n-+-2 16 n’

and the whole expression (38) reduces to

@"’i‘_—_g)‘fﬁ%(%—i’)) (n —1).

Denoting the numerical coefficient of A in (37) by C,, that equation becomes

oL Sy vl (0= 8) (0 — 1) — AR (= 10 (0 — 1) s =0,
Y
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108 E. T. HANSON ON DIFFRACTION.

We can now write, for the series in which the suffixes of the &’s differ by four,

. . S24—“Sl4a
in which
4 2 3 4 o« 6
a2 A4y )
S1e 3\*"53721'77 319
4 (o
2 At {u‘-‘e"“2 du
3 ot Jo
Aps 1 1 s
R § — 4 ( _— —_— —a
= 34, A.p.<2a3—{—3“>e (39
and
24“—A2l‘-4f

We shall not develop the function f(a) explicitly, for sufficient indications have now
been given as to the derivation of each succeeding series. The results obtained are valid
over a considerable region, and for a reasonably wide range of values of the ratio «a.

One more series will be obtained, however, in order to complete the approximate
solution for the space between the planes.

It is the series deduced by retaining only the first power of e**. In this series the
general equation to be satisfied among the coefficients is

4an1An1 + (% + 2) (% + 1) an+2,1 = O:
4A,, =1 — n? + 2A.

where

The development of the series is straightforward and, if it be denoted by S,

SIZA';:G%(!’(L{ 2A(J- +22A(A'—'2.1.2) !144_”.}.

51

The series within brackets can easily be shown to be convergent for all values of «a
and for all values of p lying between 0 and 1. The series in which the suffixes of the
a’s differ by 6, 8, etc., contain respectively u®, u8, etc., as factors, and, therefore,
need not be retained when the value of y is moderately small.

The approximate solution in the space between the planes, when ¢ is large and

negative, is
_% Sl ez'x (— 2 sin $o+2-cos ¢o+d)’

— %¢ being, of course, written for -4¢.
When «a is small this expression reduces to

2 _ N
T N 1)
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E. T. HANSON ON DIFFRACTION. 109

which can be expressed in Cartesian co-ordinates by means of the equations of the
fundamental transformation.

It should be noted that, since A is purely imaginary, the factor A} in (40) implies
the presence of ¢, so that there is a change of phase of one-eighth of a wave-length.
The above results show that, in the case of the electromagnetic waves postulated, the
wave dies out altogether as it proceeds into the space between the two planes when the
latter are perfect conductors. '

In the case of sound waves, however, the wave proceeds into the space between the
two planes unaffected.

Efftux of Sound Waves.

It the sound waves are emerging from the space contained between the two planes,
it is necessary to use the form (5) of the differential equation.
Putting, then,

Y = a/=,
I = sin ¢,
m = 0,
and
N == CO8 ¢y,

in that equation, it becomes, since

élg ?—t-(l + €* — 2¢e* cos ),
a¢2+aq;2 g}; 1A% (¢ —2¢€fcos ) =0. . . . . . (41)

If we write = — ¢ for ¢ and expand in powers of cos ¢, this problem can be treated
generally by methods similar to the foregoing.
But a first approximation, when «a is small, to the solution of (41) is the appropriate

solution of the equation
o°F
42

The solution required is, accordingly,

F=1J, (%—asin do e“‘) ,

—}— sm2¢> 624’F~0 e e e e e e e (42)

where J, is BESSEL’S function of zero order. For the complete solution we have, there-
fore,

u = BJ, <';—a-sin 4’»084’) exp i <% Sin ¢g . b -+ 2 COS Py - ct\ .
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110 E. T. HANSON ON DIFFRACTION.

When ¢ becomes negative, that is in the interior space, J, approaches the value unity
so that in this space there is a plane wave emerging into the outside air.

This problem is of some interest in connection with the theory of the motion of the
air at the mouth of a resonator. When «a is small the only complete solution of the
resonator problem hitherto given is that by RavrLeicH for the transmission of plane
waves through small apertures in plane screens.

SecrioN 3.—THE ErvuipTic TRANSFORMATION.

As in the previous section there are some problems under this heading in which the
advantages of expanding in powers of cos { (¢ — {¢,) are very great. The problems
referred to contain in their solution, so far as the function ¢ is concerned, powers of
cos % (¢ — o) only, and, consequently, approximate solutions are very readily obtained
in those regions throughout which cos (¢ — ¢,) is small.

The importance of the solutions lies in the analytical investigations which may be
carried out in a very important region and which, moreover, are not necessarily restricted
to small values of the ratio of the dimensions of the obstacle to the wave-length.

The complete extension of the solutions is straightforward but apparently laborious.
It is not impossible, however, that mathematical investigation into the nature of the
general equation which connects the coefficients may result in a workable method.

The transformation which we shall have under discussion in this section is the elliptic
one

© + iy = asinh (4 + ib),

x = @ sinh ¢ cos ¢

so that

and
Yy = a cosh ¢ sin ¢.

Applying the equation (4) we have, upon putting

uea 8in ¢y = A,
and re-arranging the terms,

%Z—fz—“-—}—%q]j;o—f‘ Aéﬂ“ sinh ¢ cos (¢ — o) — al:p"cosh $ sin (¢ — do)
+ Aaaljjf cos Yo cos e~ - A(aFo cos Yosin e™?=0. . . (43)

We shall commence with a discussion of the case of incidence perpendicular to the
axis of . In this case ¢, = 4=, and (43) reduces to

0°F,
o ¢?

0%l
oy¢?

A 9o
ED)

-+

-+ Aa‘ 2 sinh ¢ cos (¢ — §x) — cosh ¢ sin (¢ —dn) =0. . (44)
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E. T. HANSON ON DIFFRACTION. 111

The solution of the problem for the incident wave will then be

U = eim (¥ sin ¢o+2 cos $y+ct) FO
? . .

In fig. 3 a semi-infinite plane OC has a lamina AB, whose centre line coincides with the
edge of the semi-infinite plane, attached at right angles to it. Waves are incident
in a direction perpendicular to OC, the axis of x. '

We have to consider the possibility of a solution of (44) in powers of cos L (¢ — &x).
Putting cos § (np — 4n) = p we have, as before,

s (4 — ) 2L (u7) = — )
cos (¢ —dn)p* = 2" — = ... (46)
2
L) = — 1w — ot

The function Fy must now be expressed in the form
Fo=TFup +Fep3 +Fps .. +Fpr4-00 o0 000 (47)

Applying the differential equation (44) to the term F,p" in the expansion of K, there
is obtained the expression ;

p"{%i; — i, — A%}i sinh ¢ + AF,n cosh </>}
+ o {in(n — 1) Fo}
1+t {21&88(;S sinh ¢ — AF,n cosh (ﬁ} ...... . (48)

Incidence Perpendicular to x-axis. Furst Solution.

In the case of the prescribed electromagnetic waves F, may be expanded in the form

F, = Z G SIND T,

m=1

In the case of sound waves F, may be expanded in the form
F, = Gy cOsh $mp.
1

We shall consider the case of sound waves in detail.
Now

2¢>

- cosh m¢é cosh ¢ =% <coshm—_2t—2 ¢ + cosh

VOL. CCXXIX.—A Q
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112 E. T. HANSON ON DIFFRACTION.

and

sinh ¥m¢ sinh ¢ =% ( cosh 7—”—;———2 ¢ — cosh 2 ; 2 45)

v

Hence, if we consider the single term of F,, which « cosh imé, and substitute it in
(48), we obtain the expression

" {(;}mz — 4n?) cosh Im¢ — A Z& (cosh 3m + 2¢ — cosh dm — 2¢)

+ A g (cosh Im + 2¢ - cosh %75:"2_«#)}

+ p"" {dn (n — 1) cosh dme}

We can now select the coeflicient of u" cosh 3m¢ in the expression obtained by substi-
tuting F, in the differential equation. Since this coefficient must be zero, we have

— 71" %2 - WLZ) Qi + %A (’n - %m + 1) a’n,m—‘z ”I‘ %A (% + %m ”'F‘ 1) aﬂ,m+2
"- JZA (7?/ - I)n) Ap—2,m—2 %A- (/n‘ + 7") U2, m 42 + % (n + 2) (n + 1) Apt2,m = 0. (49)

We must now investigate, as far as possible, the nature of the coefficients derived from
equation (49).

If we put m = n -+ 2 in (49) then, on account of the assumptions made in the expan-
sions of the F’s, we must have

Antty, + (1 4 2) (1 + 1) Guyz) @iz = 0.
Hence, for the series whose coeflicients contain equal suffixes, we have, putting

Ay = ("21'A)17

1

tan = = g (A"
b Ay
55 = 3T3 (FA)E,

etc., 1.e., the coeflicients of the expansion of the FRESNEL integral.
If S, denote this series and if we write '

(FA) ep = and (FA)le™Mp = B,
the series becomes
)
0

QS(,x.[:e*“’du—i—je"“*du. B N 6 (0]
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Since a5, could form the first coefficient of an independent series, all those coefficients
whose suffixes differ by two are not required. Again put m = n — 2 in (49), and it
follows that

A (n + 4) Qp, n—4 + A. 3Ny + (% + 2) (n -+ 1) Apy2,n—2 == 0. . .. (51)
From (51) we can write down in succession
A3.3ag3 + 5.4a5 + 0 ...+ 0 » =0,
A3. 505 + 9Aay +7.6ap & ... I | 0 =0,
A?’.' Ny + 0 _}_ 0 + L + (’ﬂ + 4) Aan, n—d4 _l'_ (% +2) (’l?/+ 1) a‘n-}-'z, n—2 T 0.

From these equations we can eliminate all those coefficients, whose suffixes differ by
four, except @y s q_2 by means of the determinant '

O == 3“33 50/55 7a77 (% — 2) 0&,@‘2’”_2 ’nam "{" (n _}— 2) (Wt ‘;‘;&1) a’n+2, n—2
5.4 9A 0 0 0
0 7.6 11A 0 0
o 0 0  am-—1) (n - 4) A

Inserting the values of the a’s with equal suffixes which we have already found, this
determinant leads to 4

(— 1)t (n42)!

3A . 3.9 (nmn-2

= (1R AM5 .7 ... (n+ 4) {5—1—7—1— ,-7—1-5 -+ ... —{—(% +2)1(% - 4)}

Now the series in brackets on the right-hand side of this equation can be summed and
its value is

1 n—1
10 »nf+4

Hence, finally,
Uy, ny = (— 1)} @9 {g(%A)HM{ 1

1
(T is

Denoting the series under consideration by 8, we have

(52)

o= AP | S {— e b Ja —e) + Ll e Lo~ e ] o)

Since of is purely imaginary, S, vanishes for large values of « to the order « 2.

Q2
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114 E. T. HANSON ON DIFFRACTION.

For the subsequent series the factors involve p® and higher powers, and they also
involve the second power of xa at the lowest. The solution of the problem for the
incident wave is, accordingly, as far as we have taken it.

_1_ eix (¥ sin pg+2 COS b+ ct) “
7.,;":'

e du + (Be’“’ (lu—]—2S4}. e .. (59)
0

L J —o o

The corresponding solution for the reflected wave is

-

l eix(—ysingbo+zcos¢o+ct){Jm
ﬂ:%

o du+jﬁ'e—u'du+s;}, (55
0

in which o', p’, and §', differ from «, 8, and S, only in having ¢ 4 = written in place of
(¢ — 3x). If xa be not too great, the remarkably small effect, which the lamina- has
upon the diffraction phenomena in FRESNEL’s region, will be observed.

Incidence Perpendicular to the x Axis.  Second Solution.

We shall now consider the problem of diffraction under the elliptic transformation
by an alternative treatment of the case just discussed.
For this alternative solution of the problem of sound waves we expand F, in powers

of cosh }4.
We write, therefore,
F,= X a,,cosh™ ¢,
Mol
and we obtain for the general coefficient, which arises from the substituting of F, in
the differential equation (44),

(%mz —‘ %nz "" Am — A?’I/) (42 + % (1’1; '+' 2) (% + 1) Apy2,m — A (2m - %) Ap—2,m
—Fm +2)(m + 1)y e +A 20— M A+ 2) @y s +2A (M — ) Wy s (56)

This must be equated to zero.
Writing m = n + 2 in (56), the general equation, which determines the series with

coefficients whose suffixes are equal, is
(n + 2) (In +1) a’n+?, n+4-2 + 4-'A'na’rm = 0-

Puttihg a;; = (2A)}, this leads to,
(24)F

Gy = (—1)p0o-) EST
= T G —

This series is again, therefore, the FRESNEL integral. Putting m = » in (56) it is found
that, on account of the vanishing of the first and last terms in that expression, the series
with coefficients whose suffixes differ by two is independent and therefore not required.
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E. T. HANSON ON DIFFRACTION. 115
Putting m = n — 2 in (56), then, since
n(n— 1) nn +4A(?’—"2)an 2, n~2 — =0,

the expression, which determines the series with coefficients whose suffixes differ by
four, reduces to

(n+2) (m+1)Apon-2+ 8Ady_s pos +4A (0 +4)a, ., = 0.

This leads to the determinant

0= Gy Q33 @55 Uy g, n—1 {an—2,n—-2 + (n 4 2) (4 1) Gy ”“2}
: 8A
5.4 4A.9 0 0 0
0 7.6 4A.11 0 0 ’
0 0 0 n(n—1) 4A (n + 4)

which reduces to the equation

(— 1)te-9 (n + 28)1(;% +1)

n ' a’n+2, n-—2

= b7 ... (n-4) (4 H""S)f?,; 1 4 n—~1' 1 }

@ 8.5.7 ... (0 d) (AN OV g = 2 9+ e T T
The series within brackets on the right-hand side of this equation is easily shown to be
equal to

%IU'
+
,p.
"‘l
[\9]
S
T
+
=

It follows that

ﬂ“b n 1 5 21 1 1
uras = (=10 AT (20 )
2 2/ - . ¢

Putting
‘ v = (2A)} u cosh 14,

where p = cos (¢ — $rn) as before, the series mth coefﬁclents whose suffixes differ
by four is found to be equivalent to

5 1 __2 1 1 * 2 1 ( . 11 A’
2A { Y SeTY — 2, - 111 du 2 _j _—y d’ }'
R e L TR u

»

The combination may be noted in this expression of simple harmonic terms with
decreasing amplitude as y increases, and the diffraction integrals of FRESNEL.
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116 E. T. HANSON ON DIFFRACTION.

A comparison of the two solutions shows that the first solution is in all respects more
convenient for practical application than the second.

The Solution when xa 1s Small.

We shall now consider briefly the general application of the elliptic transformation
when «a is small. We shall assume that ¢, may have any value, but for the sake of
simplicity it will be assumed that ¢, = §=. ‘

Plane waves are incident in the direction DO (fig. 3). The line DO is then the
asymptote of a branch of the hyperbola {¢,.

y=izm
o}
\ R
$l-o
- Y0 )
< e $am
$l=0
8
Yadar
F1e. 3.

Taking F to be the solution which is being sought, the wave equation

G
o oy*
transforms into
o | o2F 1,202 (2 sinh? 1 201 F — 0 .
gaé‘f‘a——-w‘f*ika (2sinh? ¢ —1 —cos2¢)F =0. . . . .. (57)

Putting F = P . Q, where P is a function of 4 only and Q a function of ¢ only, elementary
solutions of (57) are obtained from the equations

‘f — miP - fea? 2sinh? ¢ — P =0, . . ... .. (58).
and
2
g‘qTQ%' FmPQ — b oos 20 . Q = 0. . .. ... .. (59)
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In the first place write
ka sinh ¢ = u.
Equation (58) then transforms into

o*P oP (82P 1 >
2 — 2 — m? 202 (— — =0... ... (60
uau2+uau+(u m?) P + 2a o P (60)
In the second place write
ka cosh ¢ = u.
Equation (58) then transforms into
o*P oP P | .
2 pepamnd 2 2 — k20% | = 3. - e e e e s
uauz—}—uau—’,—(u m?) P Ka<8u2+2P_) 0 (61)

Solutions of the equations (59), (60) and (61) can be obtained by successive approxi-
mation, and the first approximation, which is valid when «a is small, is obtained from
the equations

P*Q | o0 —
aqu—l—QOO, ............. (62)
and
2P | oP B
u2%2—+u8—u-*{—(u2”—"m2)P—0 ......... (63)

Equation (63) is the well-known equation of BEsseL, and, therefore, (62) and (63) are
1dentically the same as the equations from which the elementary solutions of the wave
equation, expressed in cylindrical co-ordinates, are obtained.

When «a is small we can, accordingly, write down the appropriate solutions at once.
It is unnecessary to reproduce them here.

SEcTION 4.—THE PARABOLIC TRANSFORMATION.

The simplest application of equation (4) is to the problem of the incidence of plane
electromagnetic waves of the prescribed type upon a parabolic cylinder.
The required transformation is
o z 41y = 30 (6 +id),
in which ¢ is a constant.
In this case (4) is replaced by
o?F | o*F oF R ( v oF

W%—-a—;;—!—%msin b, COS 4’°‘<»‘/’§37$‘“ upé—@)—l—%xasin b SIn Y Va3 +¢g%‘>::0

If the normal to the incident wave front be perpendicular to the axis of y, ¢, = 0,
and this equation reduces to

o*F | 0*F oF
¢ Tap T A A

in which A = 2ika sin ¢,.

oF

¢ 0 (64)
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118 E. T. HANSON ON DIFFRACTION.

Equation (64) is one in which the variables can be separated, and elementary solutions
can be obtained by the usual method.

The function F must be zero over the surface of the parabolic cylinder which we shall
denote by ¢ = ¢,.

The appropriate function is a solution of the differential equation

o2F oF
ap TAGE =0
or
/e’““" aF = 0.

7&

The solution is, therefore,
F:Bﬁfwﬂ¢

where B, is an arbitrary constant.
Let now

By = (e

Then the complete solution is

b
Uy = eix (2 €08 o+ sin ¢o+-cf) BO j e—ixa sin ¢, . u’du . (65)
b L I e

1

corresponding to a wave incident at an angle ¢, with the axis of z.
The solution (65) is easily split up into two parts consisting of the incident wave

exp < (2 o8 ¢, + @ sin ¢y + cf)
and the scattered wave.
The foregoing represents probably the simplest possible exact solution of a problem
in diffraction.

SUMMARY. (Added January 3, 1930.)

The analysis developed in the preceding paper has, as its main object, the considera-
tion of the effect of certain obstacles upon a train of waves which is incident upon
them. The obstacles are bounded by two-dimensional surfaces, and the incident waves
are either plane waves of sound or plane. eleotromagnetlc waves travelling in any
prescribed direction.

In the case of waves of the latter type falling upon a two-dimensional obstacle, the
problem can always be solved if the electric force in the undisturbed wave front is
parallel to the generating lines of the obstacle. If the obstacle is perfectly conducting
the solution depends upon the discovery of a function which vanishes at every point
of the surface of the obstacle. The polarisation in the diffracted wave can then be
determined at any point by an application of MAXWELL’S electromagnetic equations.
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E. T. HANSON ON DIFFRACTION. 119

If the incident waves are waves of sound the function required is such that its normal
gradient vanishes at every point of the surface of the obstacle. ‘
- The problem which is solved first is that of the diffraction of planes waves by two
parallel semi-infinite planes. This is made possible by an application of HELMHOLTZ'S
well-known transformation

Z'=%(—x+e”‘)+w,
where
2 = x4+ w,
rX = ¢1‘7/‘J.J,
and
o = o +1B.

The distance between the two planes is 2a ; the plane ¢ = 0 is the upper plane, and the
plane ¢ = 2= is the lower. The constant « is determined to suit our requirements.
The first application of the solution is made to a consideration of the effect of the thick-
ness of a straight edge upon FrRESNEL’S diffraction phenomena in the neighbourhood of
the geometrical shadow. For this purpose we assume perpendicular incidence, in
which case (see equation (27) ) ¢ = ¢y = 3n. In the neighbourhood of the geometrical
shadow we may put ¢ = §= — 0, where 0 is small.
From (27) we obtain the approximation in that neighbourhood in the form

Uy _ e—w"{l 4o, ol j =" dp — Abgib gmiae? {az (M + iN) + =t j o dv}.
B T ) 0

—®

In the neighbourhood in question ¢ is very large, so that the second term on the right
hand side of the foregoing equation is quite negligible.

On substituting (¢47)* w for v, so as to bring the integral into FRESNEL’S form, and
on determining B so as to make the amplitude of the undisturbed incident wave unity,
the required approximation is given by

: I ; g
Uy == j\_}é e@h—zxae"’ {1 + g . ,ﬂ:;a_} j-i—waww dw’
where

B = (ka): ¢ 0/x.

For the relative intensities we deduce the expression

t= 41+ (0 S]] cos gt ) in o ) |

For the purposes of illustration we have taken the wave-length of the incident wave
VOL. COXXIX.—A R
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120 E. T. HANSON ON DIFFRACTION.

to be 1/x times the thickness 2a of the diffracting edge DCE (fig. 4). The arrow denotes
the direction of incidence ; POQ is the line along which the intensities are measured,
O being the edge of the geometrical shadow drawn from C the centre of the diffracting

1

|

E ——
A \ B
P 0 X, Q

Fic. 4.

edge; and z, is the point at which the intensity is one-quarter of that in the incident
wave, being situated upon the geometrical shadow when the diffracting edge is infinitely
thin.

Oz, = 1-34 X 2a,
and

0C = 255 X 2a.
AB represents the intensity in the incident wave, and the diagram is drawn to scale
except in so far as the vertical distance OC is concerned.

The second application is concerned with the very interesting effect near the mouth
of the two planes. Plane waves of sound are assumed to be advancing in the direction
of the arrow (fig. 5) parallel to the upper side of the upper plane. The required solution
is given by

Uy = %eixa: _I_ ;_t!;e‘iw Fm

corresponding to unit amplitude in the undisturbed wave. The equation to be satisfied
among the coefficients which occur in the expansion of F is obtained by putting ¢, = 0
in equation (11). For the present purpose we have determined the values of the
following coefficients :— »

011 Q33 Qs Q7
Q31 53 Qs

51 Q73

7
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E. T. HANSON ON DIFFRACTION. 121

The corresponding value of F, has been determined for a point P at which ¢ = 0 and

cos 1y = — 1/4/2. This value turns out to be given by
F, — — B%[l _ g 282 _“.”_Bs],
105 630 35
B > A
¥ o
- 0
v -

Fra. 5.

where —iB = § = 2a/) (2a being the distance between the two planes and A the wave-
length). '
Realising the expression for u, we obtain finally, denoting the real part of w, by

'u’()rs . ~
o L 2B ] . 2p! e
Qily, = COS K _1 or) ( Q)‘, -+ sin ke (@)’ (P + Q)
where - ‘
P—Q=1-+0-75p — 0-378% — 0-09p°
and ”

P4+Q=1—0-758 —0-37p2 + 0-09p3.

Putting 2u,, = C cos (xx — ), the diagram (fig. 5) is obtained. This diagram shows
the variation of amplitude and phase at the point P, whose co-ordinates with respect to
O are x, = — 0-32a, y, = — 0-82q, for a range of values of 2a/ A The amplitude and
phase v in the undisturbed wave are, upon the scale of the diagram, two and zero
respectively.

R 2
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122 L. T. HANSON ON DIFFRACTION.

The approximation deduced for F, in the present application is valid with very little
error for values of 2a/) as great as 0-75, and it becomes of greater validity at all points
near the mouth for which y < [0-82a|.

When ¢ is large and negative some important approximations can be obtained which
apply to points lying between the two planes. These will not be considered in detail,
but we shall return briefly to the straight edge regarded as a source of diffraction
' phenomena, and shall consider the propaga-
tion of energy inte the geometrical shadow

\!\'

) space.
y / Blectromagnetic waves, whose polarisa-
'1 tion is parallel to the axis of z, are incident
in a direction making an angle ¢, with
the axis of z (fig. 6). Consider ahy point
O on the edge of the semi-infinite planc
AB, and let OP be the direction of the
incident waves.  Rotate OP upon the
surface of a zone of semi-angle ¢, till
OP comes into the position 0, which
lies well within the geometrical shadow.
Let QN be perpendicular to OZ.- Then it
is shown that at Q the electric force in the
scattered wave is sensibly perpendicular
to OQ and lies in the plane OQN, while
the magnetic force at Q is perpendicular
to the plane OQN. Energy is thercfore
Tre. 6. propagated within the shadow as though
. from a source at O.

In fig. 3 another interesting problem is presented by the diffraction of plane waves
impinging upon a semi-infinite plane with a plane lamina at the end. In thig case we

require the elliptic transformation given by

x 4 1y = asinh (¢ 4 19),

in which ¢, = 0, represents the lamina and ¢, = 0 and 2= respectively, represents the
two sides of the semi-infinite plane. The incident waves are sound waves and the angle
of incidence is such that ¢, = §=.

The first point to notice in the solution is the extremely small effect of the lamina
upon FRESNEL’S diffraction phenomena. * An illustration of the motion near the lamina
is obtained by the determination of the values of the coefficients in the expansion of
I, by means of the equation (49). '

Putting ¢,, the angle which the normal to the incident wave front makes with the
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axis of 2, equal to 4w, that is, assuming perpendicular incidence upon the semi-infinite
plane, the complete solution is given by.
Uy = % iad + %e_iw + %. {eiKyFi + e‘ikyFr}:’
i

where

Eizallcosh%¢cos%(¢“—%’”’)"{"n-

and :
F, = ay, cosh 3¢ cos 3 (4 +3m) + ...,

Now the approximation contemplated requires the evaluation of a number of the “ a’s,”
each ¢ @ ” being a function of $A, = ixa. These are as follows :—

(%) Q33 55 Q7 Qgy
51 Q3 Qg5 Q11,7
Uy Qg3 1, 5
Uy A1, 3
Q11,1

Let us now consider a point P close to the lamina where ¢ ié sensibly zero and ¢ = 3= + ¢,
1e being moderately small. We obtain, for the real part u,, of u,,

U, = COS KY — é—i; [cos ky (P — R) 4+ sin «y (Q + S)],

where B = ka cos? }¢, and P, Q, R, S are functions of «a and «.
Whep 3e = 16°, which we take for illustration,
P = 1-270 — 0-3728% + 0-1704*
— 03338 -+ 0-214p83% — 0-0818°
Q = 0-730 — 0-372p8% + 0-170p"

R =

I

Let
e, = Ccos (xy +v) 3

then the diagram (fig. 7) shows the values of C and vy, for a range of values of 2a/2, at
the point P, where CP = 0-85a.

The amplitude GH of the incident wave is unity and the phase v is zero.

As a final illustration of perpendicular incidence we take the following approximation
to the solution, viz. :—

U, = COS kY % (xa)? cosh 3¢ (cos ky cos ¢ — sin «y sin 1¢).
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This expression is a good approximation when xa is small and when

0 ,
= (xa)? cosh
2 (ca¥ cosh }¢
is not much greater than 0-5.
D
e Hoge 25
|
c Y I
2a ¥
0 1 2 3 4 o 0 5 T 15 2 T
Fi1a. 7. Fic. 8.

Put this function equal to 0+5 and determine the intensity I for all values of ¢. Then
I=1-25 4+ cos ¢.

Fig. (8) shows the intensity distribution around the lamina, the intensity in the incident
wave being unity.
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